1,25-dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine β-synthase.
نویسندگان
چکیده
High homocysteine (HCY) levels are a risk factor for osteoporotic fracture. Furthermore, bone quality and strength are compromised by elevated HCY owing to its negative impact on collagen maturation. HCY is cleared by cystathionine β-synthase (CBS), the first enzyme in the transsulfuration pathway. CBS converts HCY to cystathionine, thereby committing it to cysteine synthesis. A microarray experiment on MC3T3-E1 murine preosteoblasts treated with 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] revealed a cluster of genes including the cbs gene, of which the transcription was rapidly and strongly induced by 1,25(OH)(2) D(3) . Quantitative real-time PCR and Western blot analysis confirmed higher levels of cbs mRNA and protein after 1,25(OH)(2) D(3) treatment in murine and human cells. Moreover, measurement of CBS enzyme activity and quantitative measurements of HCY, cystathionine, and cysteine concentrations were consistent with elevated transsulfuration activity in 1,25(OH)(2) D(3) -treated cells. The importance of a functional vitamin D receptor (VDR) for transcriptional regulation of cbs was shown in primary murine VDR knockout osteoblasts, in which upregulation of cbs in response to 1,25(OH)(2) D(3) was abolished. Chromatin immunoprecipitation on chip and transfection studies revealed a functional vitamin D response element in the second intron of cbs. To further explore the potential clinical relevance of our ex vivo findings, human data from the Longitudinal Aging Study Amsterdam suggested a correlation between vitamin D status [25(OH)D(3) levels] and HCY levels. In conclusion, this study showed that cbs is a primary 1,25(OH)(2) D(3) target gene which renders HCY metabolism responsive to 1,25(OH)(2) D(3).
منابع مشابه
Effects of 1,25-dihydroxyvitamin D3 on the differentiation of MC3T3-E1 osteoblast-like cells
Purpose The purpose of this study was to evaluate the effects of 1,25-dihydroxyvitamin D3 on the proliferation, differentiation, and matrix mineralization of MC3T3-E1 osteoblast-like cells in vitro. Methods MC3T3-E1 osteoblastic cells and 1,25-dihydroxyvitamin D3 were prepared. Cytotoxic effects and osteogenic differentiation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylt...
متن کاملRegulation of ADAMTS-2 by 1,25-Dihydroxyvitamin D3 in Osteoblastic Cells
Biosynthetic processing of fibrillar procollagens is essential for producing mature collagen monomers that polymerize into fibrils by a self-assembly process. The metalloproteinase ADAMTS-2 is the major enzyme that processes the N-propeptide of type I procollagen in the skin and also of type II and type III procollagens. Mutations in the ADAMTS-2 gene cause dermatospraxis in animals and Ehlers-...
متن کاملاثر هم افزایی کاربرد توأم زهر زنبور عسل و25،1- دی هیدروکسی ویتامینD3 برالقای تمایز رده ی سلولی سرطانی پرومیلوسیتی HL-60
Introduction & Objective: Acute promyelocytic leukemia (APL) is a kind of acute leukemia characterized by a balanced t (15, 17) translocation which fails to develop into mature cells and proliferate in an unregulated fashion. In the recent years, in addition to combinatoral chemotherapy to treat unmature cancerous cells, differentiation therapy by differentiating agents as a novel procedure ...
متن کاملInhibition of proliferation and induction of apoptosis by the combination of β-carotene and 1,25-dihydroxyvitamin D3 in human esophageal cancer EC9706 cells.
Esophageal cancer is a common malignant tumor occurring in human esophageal epithelial tissue. The primary purpose of this paper was to define the effects of β-carotene and 1,25-dihydroxyvitamin D3, alone and in combination, on cell proliferation, cell cycle and apoptosis of human esophageal cancer EC9706 cells. Treatment with different concentrations of β-carotene and/or 1,25-dihydroxyvitamin ...
متن کاملDexamethasone and 1,25-Dihydroxyvitamin D3 Reduce Oxidative Stress-Related DNA Damage in Differentiating Osteoblasts
The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
دوره 26 12 شماره
صفحات -
تاریخ انتشار 2011